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Abstract. The fuzzy systems, the artificial neural networks, and the neuro-fuzzy sys-
tems have been widely used in modeling of the complex, unknown and nonlinear functions.
In this paper, a comparative study between two soft computing techniques was done, namely,
between: (a) a Multiple Neuro-Fuzzy Inference System (MANFIS) and (b) two different Arti-
ficial Neural Network structures - and this comparison was one investigated in relation with
a practical embedded application. More precisely, the research used a new wearable system,
named Intell.TieSens, in order to model the complex nonlinear relationship that exist between
the capacitive sensors embedded in a tie collar and the 3D head position of the wearer of that
tie. The Intell.TieSens system was designed to be a noncontact system, low power, portable,
lightweight, having a Bluetooth Low Energy wireless data communication capability in order
to be able both to be paired with a personal computer or with a smartphone and to iden-
tify in real time the human 3D head position. The results showed the superior performances
obtained with MANFIS system – two times better than the performances obtained with the
RBF (Radial Basis Function) neural network. Out of the tested models, the MLP (MultiLayer
Perceptron) neural network obtained the lowest performances.

Key-words: Fuzzy, MANFIS, CANFIS, neural network, RBF, wearable, capacitive
sensing.

1. Introduction
The function approximation problems concerns in the estimation of an unknown model with

simpler functions using for this information extracted from pairs of known input-output samples.
The final goal of the constructed model is to obtain the correct output value when a new input
data is used. However, many times in practical situation, the deep knowledge regarding the bio-
logical processes or the existing knowledge about different plant models are not enough to extract
equations of the mathematical model of the unknown system. In such situation, the solution is to



378 D. M. Dobrea, M. C. Dobrea

obtain many statistical representative input-output data, from the unknown, model and to use a
neuro-fuzzy or artificial neural network (ANN) system to model the unknown behavior.

The artificial neural networks and the fuzzy systems [1], each of them with its advantages
as well as with its disadvantages, have been widely used in modeling of unknown nonlinear
processes or in optimal control [2]. In addition, the integration of neural networks and fuzzy
logic systems generated a new class of neuro-fuzzy systems that combine the advantages of both
ANN and fuzzy logic in a new framework.

The neuro-fuzzy systems has been applied with success in many fields of engineering and
science, including: dynamic system identification [3, 4], filtering [5], mechanical property pre-
diction [6], economy [7], brain tumor detection [8], motor model and control [9, 10], sensors
[11], fault diagnosis [12], etc.

Having in mind the results reported so far in the literature, this paper proposes to find the best
solution for modeling the unknown relation that exist between four capacitive sensors placed
around the neck of a subject - sensors that are embedded into a tie collar - and the subject’s head
position. Such a system can prove to be very useful, having many potential applications like:
detection and assessment of the epilepsy seizures [13], identification of the body postures [14],
health monitoring [15] or human activity recognition [16].

2. The wearable system
Intell.TieSens is a new wearable capacitive sensor system able to monitor, without any con-

tact, people performing their usual tasks. The final goal of this system is to correctly identify the
3D head position of a subject in real time and in a real environment.

Fig. 1. (a) The sensors measuring setup and (b) The Intell.TieSens system.

2.1. Measuring setup
The Intell.TieSens system is based on the information obtained from four capacitive sensors

(Clf , Clb, Crb, and Crf ), placed around the neck (see Figure 1(a)). Based on these sensors it
performs a measurement of the head position. The system is able to detect the rotation of the
head around (Figure 1(a) and (b)): yaw axis (head rotation in the transversal plane), pitch axis
(the rotation of the head in the sagittal plane) and the roll axis (head rotation in the frontal plane).
The Intell.TieSens uses only the measurement values of these capacitors to identify the 3D the
head position and movements.



A MANFIS model of the 3D head position based on a wearable system 379

The values of the sensors, (Clf , Clb, Crb, and Crf ), are in a direct relation with the subject
head position. As a result, a complex movement (that took place simultaneously in all the axes)
will be reflected, as information, in all four sensors. For example, in Figure 2, the capacitive
signals for a continuous motion of the head in the transversal plane is presented: the head ori-
entation goes from 0◦ position to –45◦ position to the left; then, it returns to the initial state, the
0-degree position, and continues to the right, until the +45◦ position is reached. In the end, it
returns to the 0-degree position. In Figure 2 the specific mean values were extracted from the
signals of all channels. The relationship between the sensor values and the head movement will
be further presented, in detail, in subchapter 3.1 of this paper.

An extensive, comparative analysis of Intell.TieSens system with other similar systems was
done in [31]. In summary, we highlight here the main differences between Intell.TieSens and
other systems proposed in the literature [31]: (a) the other referred systems have dedicated sen-
sors to sense each particular motion [17, 18, 19], (b) the placement of the sensors follows other
configurations than in our case, (c) the other systems combine different types of sensors: ca-
pacitive, resistive, inductive and bio-impedance and (d) another main difference consists in the
measurement system itself - in the present research, a narrow-band LC-based capacitive mea-
surement system was used. The system proposed by us does not follow these approaches. This
fact will generate a software complexity, due to the implied methods required in the extraction
and identification of a specific head position based on the mixed information generated by the
sensors.

Fig. 2. The response of sensors, obtained for head movement in the transversal plan.

2.2. The hardware system

The wearable system is built around a SimpleLink CC2650 wireless System-on-Chip (SoC)
device, produced by Texas Instruments Company. SimpleLink CC2650 SoC is, mainly, com-
posed of three different processors (see Figure 3): (a) a Cortex-M0 processor that manages the
physical layer of the Bluetooth 2.4 GHz RF transceiver embedded on the chip, (b) a Cortex-M3
processor that handles the user application and the upper layers of the BLE (Bluetooth Low En-
ergy) protocol, and (c) an ultra-low-power Sensor controller engine (SCE) that manages, in our
case, only the external driver circuit (FDC2214) for the capacitive sensor.
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Fig. 3. The Intell.TieSens system block diagram.

2.3. The software components

In order to get an operational Intell.TieSens system, two applications were developped: (1)
one, at the wearable system level (i.e, deployed on the CC2650 SoC), and (2) another one–a
Windows 10 application–, was designed to interact with the wearable system. From the soft-
ware point of view, the wearable device works as a GATT (Generic Attribute Profile) server.
Consequently, a corresponding client application had to be provided in order to communicate
with it.

The first above-mentioned component, which runs on the CC2650 SoC processor, is primarily
responsible for the control as well as for data exchange functions through the BLE protocol. To
achieve these goals a new GATT (Generic Attributes) service and four new characteristics were
implemented. The characteristics were especially designed in order: (a) to activate a specific data
acquisition channel, (b) to set the sensor measurement period (i.e., from 120 ms up to 2550 ms),
and (c) to receive the data - from the Ch0 and Ch1 channels (the third characteristic) and from
the Ch2 and Ch3 channels (the last characteristic).

The second component, running on Windows 10 operating system, is used to: configure,
interrogate, get capacitive data, save this data (to an Excel sheet, or to a text file) and present it to
the user in text or graphical format. To implement all these functionalities an existing application
named blessTags, was completed with new modules.

The blessTags application is a program that can manage, set, communicate, use and display
information from five different types of SensorTags – examples with some of this software’s
user-interfaces are given in Figure 3. The blessTags application [20] is commercialized within
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the virtual Microsoft Store and it was developed by the first author of this paper. In this research,
the blessTags package offers basic support for the BLE protocol communication.

Fig. 4. The blessTags application with some of its different user-interfaces.

3. The neuro-fuzzy model of the 3D head position

3.1. The model complexity
For the problem, presented in this paper, the sensor capacitance changes proportionally with:

(a) the properties of the dielectric materials of the human body tissues that compose the area lo-
calized underneath the sensor (i.e., the neck, in our case), as well as with (b) the shapes and move-
ments of the neck’s different constituent tissues (i.e., skin, muscles, tendons, blood vessels etc.).

The sensitivity of the capacitive sensors varies in direct relation with the dielectric constant
of the target to measure. The dielectric constant of a biological tissue depends on the organic
and inorganic constituents of that tissue, from both cellular and molecular levels. The larger
is the value of the dielectric constant of a material (a specific tissue), the easier is to detect
it. For a particular tissue, the dielectric parameters are mainly dependent on its water content.
The water dielectric constant is about 80. The capacitance of a body tissue increases with the
increasing water content, which, in turn, is known as fluctuating with the moment of the day, the
hydration, the body temperature, the physical effort, the emotional state etc. In addition, there
are other individual’s specific factors which exert great influence on the electrical properties of
a living tissue [21, 22, 23, 24]. Such factors are: (a) the ions that are suspended in water, (b)
the ionic diffusion through the cellular membrane, (c) the polarization of the cell membranes, (d)
the polarization of the water molecules and (e) the gradient of the water content related with the
depth under the skin surface.

There is a large number of muscles involved in head orientation [25]. Several of these mus-
cles are [25]: the sternocleidomastoid (used in abduction, adduction, extension, flexion, and
rotation of the neck), platysma (involved in the left and right motion commands), the trapezius
(for upwards motion commands), splenius (used to rotate and extend the head and the neck), il-
iocostalis, longissimus and spinalis (all three used to extend and to flex the control abduction and
adduction of the spine and neck). By using all these muscles and many others, human succeeds
to move his head in any wanted direction according to the specific movement command given by
the brain to the neck muscles. These muscles work both individually as well as in pairs (placed
on the left and right sides of the neck), with the final goal to rotate the head and to flex the neck.
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The muscles presented above, together with other tissues represents the dielectric components
for the capacitive sensors placed around the neck, see Figure 1(a) and (b) and Figure 2. Based on
these dielectrics, the capacitive sensors are mapping, into a specific set of values, each orientation
of the head. The final goal of our research consists in finding the relationship established between
the capacitive sensor values and the actual direction of the individual head orientation. Due to
the variabilities and specificities of the human tissues, this is not a trivial task.

In order to sense the head position, one can embed the capacitive electrodes either in a shirt
collar or in a necktie (as in our case, see Figure 1(b)). In this way, the sensors have no direct
contact with the body. Namely, the capacitive electrodes are separated by the body through a
barrier – a textile layer. More, because the tissues of the neck have a much higher dielectric value
than the surrounding textile layers (for example, the dielectric constant for different materials are:
1.3 ÷ 1.4 for cotton; 2.8 ÷ 5.2 for different types of polyester fibers, 2.7 ÷ 4.5 for the acrylic
fibers, which are used to imitate wool; 4.0 ÷ 5.0 for the nylon fibers, that are used to imitate
silk etc.), the sensor proved to have the ability to “see through” the textile and, consequently, to
detect the neck movements.

3.2. Function approximation
Due to the very complicated and unknown relation, that exists between the capacitance values

(Clf , Clb, Crb, and Crf ) and the head orientation (yaw-pitch-roll angles):

αi = fi(Clf , Clb, Crb, Crf ), i = yaw, pitch, roll (1)

in what follows, specific nonlinear functions (for each of the 3D axes) are going to be found
starting from the input-output data set recorded previously. For this, the mean value was extracted
from the values of each channel (Clf0, Clb0, Crb0, and Crf0); in this mode, the effect generated
by the parasitic values introduced by the shiftings in the distance between the sensor and the skin
was reduced. At the inputs of the system used to model the fi functions – see (1), only the four
capacitive values – Clf0, Clb0, Crb0, and Crf0 – were supplied.

The universal approximation theorem states that a neural network or a fuzzy system (if they
obey some conditions [2], [26]) can approximate a real function, like (1), with an arbitrarily small
error ε:

|fi(x)− f̂l(x,w)| < ε, x = [Clf0, Clb0, Crb0, Crf0]
T (2)

In (2) the f̂i function is an approximation of fi function. The goal is to find a particular set
of wi coefficients able to obey relation (2), for each function fi, using for this a combination of
elementary functions ϕi(x) such as:

f̂i(x,w) =

N∑
i=1

wi · ϕi(x) (3)

The main factors required to get the smallest approximation error ε are: (a) finding the ap-
propriate type of ϕi function, (b) finding the optimum number N of the elementary functions and
(c) finding the best weights wi.

One of the most important steps, with a huge impact on the quality of the approximation,
is the choice of the elementary functions – the ϕi functions. In order to find the most accurate
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approximation of the functions fi, we decided to use several distinct models, based on several
different types of elementary functions and, at the end, to choose the best one of them. For
this reason, we chose and implemented the following models: multilayer perceptron, RBF (Ra-
dial Basis Function) neural network and MANFIS (Multiple Adaptive Neuro-Fuzzy Inference
System).

3.3. The neuronal models

Two types of neural networks, MLP (multilayer perceptron) and RBF (radial basis function)
were used in this research. We chose these neural networks mainly because they embed within
their structure different types of elementary functions (ϕi), with different types of properties.

Mostly, in classification as well as in function approximation applications, the MLP model
uses sigmoidal types of nonlinearities (i.e., logistic or tangent hyperbolic functions). These ones
are global elementary functions, because they respond to the entire input space. During the train-
ing phase, this type of neural network structure changes - according to the training data - its
elementary functions position, slope, and, thus, as a direct consequence, the functions composi-
tion itself. As a result, over time, the approximation of fi function becomes better and better.

The RBF network is an alternate topology used intensively in function approximation. This
network uses another type of elementary functions, namely, the localized radial basis functions
(ϕi). Even if the RBF networks are universal approximators, [27], like in the MLP network case,
selecting the network parameters proves to be not a trivial task.

3.4. The ANFIS model

The third model used in this research is based on a fuzzy inference system. The fuzzy
systems are a very powerful tool in function approximation due to the flexibility in linguistic
control, which is essentially based on the if-then rule set. However, this type of systems has
its own drawbacks. The main problem of such systems is given by the difficulty encountered
in determining the shape and the location of each membership function for each fuzzy input
variable. To solve this problem, an ANFIS (Adaptive Neuro-Fuzzy Inference System) model is
used. The ANFIS integrates adaptable fuzzy inputs with a modular neural network in order to
approximate complex functions.

The implemented ANFIS model uses a first order Sugeno fuzzy model. In our case, for a
system with four input variables, the fuzzy if-then rules database can be expressed as:

Rule k : If x is A3 and y is B2 and z is C2 and v is D1

then ok = pkx+ qky + rkz + skv + tk
(4)

In (4) Ai, Bi, Ci and Di (with i = 0, 1, 2 in our case) are the fuzzy sets for the inputs x, y, z,
and v, respectively; pk, qk, rk, sk and tk are the parameters in the consequent part of the k rule
and they are determined during and based on the training process.

The architecture of the implemented ANFIS model is presented in Figure 5. Five layers
compose the ANFIS architecture [28]. Each layer has nodes with similar functions.

The nodes in Layer 1 are all adaptive, with a node output function of:



384 D. M. Dobrea, M. C. Dobrea

O1,j = µAj
(x) j = 0, 2

O1,k+3 = µBk
(y) k = 0, 2

O1,l+6 = µCl
(z) l = 0, 2

O1,m+9 = µDm
(v) m = 0, 2

(5)

The outputs of the first layer specify in which degree the given inputs (x = Clf0, y =
Clb0, z = Crb0, and v = Crf0) satisfy the corresponding quantifiers (Ai, Bj , Ck or Dl). We
use for each input three membership functions (MF). The optimal number of MF was determined
within a process of trial-and-error type. The approximation error was tested for 2, 3, 4 and 5
fuzzy sets, for inputs x, y, z and v. For our problem, the best results were obtained for using
three fuzzy sets on each input. Each fuzzy set is defined by a specific membership function – in
our research, the ANFIS implementation and tests were done using the Gaussian and generalized
bell membership function types. The parameters of the membership functions are referred in the
scientific literature as the premise parameters [28].

The Layer 2 of the ANFIS model receives inputs from the first layer, and computes the
product of all output pairs from the first layer, in the form given below:

O2,i = wi = µAj
(x) · µBk

(y) · µCl
(z) · µDm

(v) i = 0, 80 (6)

These outputs represent the strengths of the corresponding fuzzy rules. Having four inputs,
and, more, for each of the input variables having three linguistic terms, we come to the situation
in which a maximum of 3 x 3 x 3 x 3 = 81 possible combinations is obtained. Further, this
calculus translates into the fact that on the second layer a number of 81 nodes will be derived.

Like the elements of Layer 2, the elements from Layer 3 are, also, fixed nodes. These nodes
calculate a normalized firing strength, according to the following formula:

O3,i = wi =
wi∑81
j=1 wj

i = 0, 80 (7)

Unlike the two previous layers, the Layer 4 is one composed of adaptive elements. The output
function for each of its nodes is given by:

O4,i = wifi = wi (pix+ qiy + riz + siv + ti) i = 0, 80 (8)

Here, the pi, qi, ri, si and ti are the parameters for the i node, parameters that will be adapted
in order to decrease the approximation error. These parameters are referred to as the consequent
parameters.

The last layer computes the outputs as a sum of all its inputs:
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Fig. 5. The architecture of ANFIS with four inputs, three linguistic labels for each input and one output.

The ANFIS model has the disadvantage of modeling only one unknown function. However,
in our case, the modeling system expects three outputs: an output for each angle of the head
position corresponding to: yaw, pitch, and roll.

There are at least two ways to obtain a system with multiple outputs, starting from the ANFIS
model. An easy way to accomplish this consists in placing several ANFIS systems in parallel,
and feeding them with the same inputs, but with different outputs. Such a system is known in
the literature as the MANFIS model – multiple ANFIS. In another approach, the ANFIS models
can be designed as having the same antecedents of fuzzy rules sets – this means that, all the
constituent ANFIS systems are going to have as identical all the first three layers, see Figure 5.
The next two layers are, however, designed to be specific for each of the ANFIS systems. This
new type of neuro-fuzzy systems is called CANFIS (Coactive Neuro-Fuzzy Inference Systems).

4. Estimating the head angles in 3D space

4.1. Database recording
Three subjects, two females (of age 22 and 42), and a male (44 years old), participated to this

study. The subjects sat on a chair, with their backs supported by the deck of the chair. Over the
entire recording time, the subjects kept their torsos in a vertical position. The chair was placed at
halfway between the two lateral walls (i.e., the subject’s left and right side).

In order to make measurements for the head rotation in both the transversal and sagittal
planes, on all three walls (left, right and front walls) different landmarks were placed in line,
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at equal distances (i.e., from 5 to 5 degrees). Therefore, on the front wall, the landmarks were
placed in the vertical position, at the intersection line between the subject sagittal plane and the
front wall, starting with –60◦ and ending with +60◦ vertical angle in the subject’s sagittal visual
field, see Figure 6(a). In this mode, the subject head pitch angle was measured. In a similar
way, in order to measure the exact yaw angle of the head, a grid of points was spread on an
imaginary line placed in transversal plane, over the all three walls (i.e., the left, frontal, and right
wall). At its turn, the subject’s head roll angle was measured in the frontal plane by placing some
landmarks on the frontal wall, as they are indicated in Figure 6(b).

The data sets recorded in this study were obtained as follows: each participant to the study
was asked to look at a particular landmark indicated via a voice command. For each such land-
mark, six distinct measurements were acquired in a random order, being interleaved with mea-
surements corresponding to other angles. To ensure a reproducible measurement, a laser pointer
(LP) was mounted on a helmet placed on the subject’s head, Figure 6(b). The laser pointer was
placed either at the subject eyes level - for the measurements in the sagittal plane -, or on the
top of the helmet – for the measurements in the transversal and frontal planes. In all cases the
LP pointed in the subject’s ahead direction. Also, the participants were asked to hold the laser
pointer on the specified landmark until the next command was issued.

Fig. 6. The placement of the landmarks on the walls for: (a) sagittal angles and (b) frontal angles – roll
head angle.

Following the above recording paradigm, the training data sets for the MANFIS model and
for the neuronal networks were obtained. The data sets consisted in the input values (i.e, the
capacitive sensors values) and in the corresponding outputs values (i.e., the subject’s head po-
sitions). During data acquisition process some unexpected aspects were encountered, with all
these related to the extreme values of the pitch, roll and yaw angles. Namely, not all users had
the physical capacity to express them. That is why, at the end, only 1618 data were acquired and
used to train the models.
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4.2. Performance metrics
The performances for the fuzzy model and for both neuronal structures, used in this study,

were evaluated with four different metrics: the mean squared error (MSE), the normalized mean
squared error (NMSE), the correlation coefficient (r), and the percent error (%error).

The MSE error incorporates both: (a) the variance of the model estimator (how widely are
spread the estimates) and (b) its bias (how far the average estimated model is from the real
value). So, to establish how well the model output fits the desired output we used the MSE
and the NMSE errors. Nevertheless, MSE and NMSE does not reflect whether the two modeled
sets of data move in the same direction or not. To eliminate this shortcoming, we computed in
addition the correlation coefficient. The last parameter, the percent error, was computed in the
following way:

%error =
100

N

N−1∑
i=0

∣∣∣∣dyi − ddiddi

∣∣∣∣ (9)

where: dyi is the denormalized model output for exemplar i, ddi is the denormalized desired out-
put and N is the number of exemplars on which the percent error was computed. Unfortunately,
this parameter can easily be misleading. For example, in the case of an output data range of
[–90◦, +90◦] – the case of the transversal plane head rotation - for an error of +5◦ instead of a
real value of 5◦, the percent error (%error) will be of 100 (hence, a huge error). However, for a
value of 90◦, the same obtained error of the model, of only +5◦, will generate a percent error of
only 5.55.

4.3. Results
With all models presented here, from the entire database we have used 80% for the training

set and 20% of data for the cross-validation (CV) set. The performances presented in all the
following tables were determined on the CV data set. In the preprocessing step, the training data
set and the CV data set - more exactly, the inputs and the outputs values to the models - were
previously normalized to the [–0.9, 0.9] interval.

Table 1. Neural network modeling performances for head rotation around each axes

Head angle ANN type MSE NMSE r %error

Yaw
MLP (15) 0.0562 0.199 0.894 62.15
RBF (45) 0.0436 0.154 0.920 52.66

Pitch
MLP (13) 0.0772 0.2 0.852 73.27
RBF (42) 0.0490 0.168 0.975 54.19

Roll
MLP (12) 0.0586 0.207 0.89 60.91
RBF (43) 0.0521 0.184 0.903 54.58

The performances obtained with the MLP and RBF networks are presented in Table I. All
tested MLP artificial neural networks were composed of tangent hyperbolic neurons on the hid-
den layer, and of a linear neuron on the output layer. The backpropagation algorithm was used
in order to train the MLP networks. For the RBF artificial neural network, we used, during the
unsupervised learning stage (which lasted 100 epochs), the conscience full competitive rule with
Euclidean metric.
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In Table I, one can find the information regarding the number of the neurons used in the
NN’s hidden layer, as being written immediately after the network name, within parentheses.
In the designing process of the neural networks, the optimal structure (the appropriate number
of: (a) neurons in the first hidden layer for MLP network and (b) the radial based function for
RBF network) was found by a trial-and-error method, based on Rissanen’s minimum description
length (MDL) criterion [26, 29]. For each head angle (i.e. yaw, pitch and roll) a specific artificial
neural network model was used, with four inputs and one single output.

From Table I, one can see that the correlation coefficient is higher than 0.85 for the MLP
networks and higher than 0.9 for the RBF networks. Both types of results suggest the same
idea, namely, the fit of the model to the data is a very good one. Moreover, the RBF networks
outperform the MLP networks performances in all tested cases, their MSE error being constantly
lower than the error obtained with the MLP neural networks.

The architectures of neuro-fuzzy models were designed with: Gaussian membership func-
tion, Takagi-Sugeno-Kang fuzzy model, and backpropagation with momentum learning algo-
rithm – see Figure 5. Each input variable had three linguistic terms.

The performances of the ANFIS model depend on two main factors: (a) on the membership
function distributions of the input variables (i.e., the premise parameters) and (b) on the coeffi-
cients (pi, qi, ri, si and ti, see equation (8)) of the first-order Takagi–Sugeno fuzzy system (i.e.,
the consequent parameters). The modeling performances presented in Table II suggest that, for
our problem, the optimum values were achieved when the membership functions were selected
as being specifics to each modeled output angle (yaw, pitch, and roll). One direct consequence of
this fact was: the MANFIS neuro-fuzzy model obtained better performances than the CANFIS
neuro-fuzzy model. More than that, by comparing the results presented in Table I and Table II,
one can easily notice that the MANFIS model obtained two times better performances than the
RBF model.

Table 2. The modeling performances of MANFIS and CANFIS neuro-fuzzy structures

Head angle
Neuro-fuzzy

model
MSE NMSE r %error

Yaw
MANFIS 0.0268 0.0935 0.952 41.4
CANFIS 0.0394 0.388 0.787 20.27

Pitch
MANFIS 0.0285 0.0979 0.936 46.73
CANFIS 0.0394 0.388 0.787 20.27

Roll
MANFIS 0.0217 0.0834 0.967 38.52
CANFIS 0.0394 0.388 0.787 20.27

The percent error (%error) for the CANFIS system, see Table II, is around 42. For a transver-
sal plane head rotation from -90◦ up to +90◦ and a constant real error of only +5◦, for each
determination we will get a percent error (%error) equal with 100 for a desired value of 5◦ and
an error of only 5.55 for a desired value of 90◦ - as we previously revealed. Knowing that the
measurements were done from 5 to 5 degrees, the global mean percent error will be, in this case,
of 52.775. However, the MANFIS modeling system obtained a percent error %error) of around
42. This primarily means that the MANFIS system obtains a mean approximation error of less
than 5◦ - this is also our resolution used for the database recording. The CANFIS performances,
see Table II, are the same for each head rotation (yaw, pitch, and roll) because the structure
of this modeling system has four inputs and three outputs, and it is not composed of three dif-
ferent ANFIS systems like in the case of MANFIS system. For CANFIS system the modeling
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performances are computed globally for all head rotation angles.
The structure of MANFIS model is more complicated than the structure of both neural net-

works models (MLP and RBF neural networks), due to a larger number of free terms that should
be determined from the data to be modeled, within the applied adaptation algorithm. In addition,
the training time of MANFIS models takes longer (around 17000 epochs) compared to the equiv-
alent training time needed by the neural network structures (around 6000 epochs). On the other
hand, the accuracy level of MANFIS model is much better than the one of neuronal networks (at
least two time superior). As a conclusion, MANFIS architecture proved to be a better approach
when modelling the nonlinear relationship between the capacitances values and the subject’s 3D
head position.

5. Conclusions
The research presented in this paper continues the researches presented in [30] and [31]. The

paper discusses three different approaches that could be considered for modelling the complex
relationships that exist between the capacitance values measured from four sensors embedded
within a tie collar and the head direction information of the subject that is wearing that tie. After
studying this complex and nonlinear relationship, we first concluded that it is too complicated
to provide a mathematical model for it. As a result, two neuronal models (a MLP network and
a RBF network) and two neuro-fuzzy models (MANFIS and CANFIS) were further considered,
designed, implemented and analyzed.

From the results reported above we draw the following conclusion: modeling the complex
and nonlinear relationship that exists between the capacitive sensors values (i.e., sensors placed
around the neck as in Figure 1(a) and Figure 3), and the head 3D position by using a MANFIS
model proved to deliver a better accuracy than when modeling the same relationship with a MLP
or with a RBF artificial neural network. Therefore, the MANFIS model should be considered for
use in the future with the Intell.TieSens wearable system.
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